
The Open University of Israel

Department of Mathematics and Computer Science

Positive and Negative Congestion Effects in

Resource Allocation Games

Final paper submitted as partial fulfillment of the requirements

towards an M.Sc. degree in Computer Science

The Open University of Israel

Computer Science Division

by

Ilia Katz

Prepared under the supervision of Dr. Leah Epstein

August 2010

Contents

1 Introduction 2

1.1 Background and Motivation . 2

1.2 Existing model . 3

1.3 Definitions . 4

1.4 Previous work . 5

1.5 New results . 6

1.6 Preliminaries . 6

2 Equilibria existence 10

2.1 Existence of Strictly Pareto optimal Nash Equilibria 10

2.2 Nonexistence of Pareto optimal Nash Equilibria 16

2.3 An improved lower bound on the PoS . 18

3 New model 21

3.1 Model definition . 21

3.2 PoS is unbounded . 21

References 26

Appendix A - Computer Program 28

List of Figures

1 Existence of Strictly Pareto optimal Nash Equilibria (Case 1) 11

2 Existence of Strictly Pareto optimal Nash Equilibria (Case 2) 13

3 Existence of Strictly Pareto optimal Nash Equilibria (Case 3) 15

4 Nonexistence of Pareto optimal Nash Equilibria 17

5 An improved lower bound on the PoS - schedule sa 18

6 An improved lower bound on the PoS - schedule sb 18

7 An improved lower bound on the PoS - schedule sc 19

8 An improved lower bound on the PoS - schedule sd 19

9 An improved lower bound on the PoS - schedule se 19

10 An improved lower bound on the PoS - schedule sf 19

11 An improved lower bound on the PoS - schedule sg 19

12 An improved lower bound on the PoS - schedule sh 19

13 An improved lower bound on the PoS - schedule si 20

14 An improved lower bound on the PoS - schedule sj 20

15 An improved lower bound on the PoS - schedule sk 20

16 PoS is unbounded (Case 1) . 22

17 PoS is unbounded (Case 2) . 23

Acknowledgments

I am gratefully thankful to my advisor, Dr. Leah Epstein. It was Leah who introduced

me to game theory. Her encouragement, guidance and support from the preliminary to the

concluding level enabled me to develop an understanding of the subject and made this work

possible. I am especially thankful to Leah for her readiness to supervise my work as an

external advisor.

Special thanks to my wife and parents, for their help and support during the entire time

of my graduate studies.

Abstract

Most of the previous work on resource allocation problems, studied from the perspective

of algorithmic game theory, has considered cost structures with either negative congestion

effects (e.g., job scheduling and network routing games), where a job prefers to be assigned to

a lightly loaded resource, or positive congestion effects (e.g., network design and bin packing

games), where a job prefers to share a resource with many jobs. In practice, both effects

take place simultaneously.

We study resource allocation games with a cost function that encompasses both the

positive and the negative congestion effects. We present a model, previously studied by

Feldman and Tamir [8], under which both effects take place simultaneously. We show that

under this model, Strictly Pareto optimal Nash Equilibria always exist for game instances

with number of players smaller than or equal to three. In contrast, we show that for game

instances with number of players greater than three, Pareto Optimal Nash Equilibria might

not exist. We improve the lower bound on the Price of Stability (PoS) of [8]. Finally, we

introduce a new model that is based on the aforementioned model and show that under the

new model, even though a Nash Equilibrium must exist, PoS is unbounded.

1

1 Introduction

1.1 Background and Motivation

In resource allocation applications, tasks are assigned to resources to be performed. For exa-

mple, in job scheduling models, jobs are assigned to servers to be processed, and in network

routing models, traffic is assigned to network links to be routed. The computer science

literature has traditionally treated these problems as combinatorial optimization problems.

In the last decade, algorithmic game theory has introduced game theoretic considerations to

many of these problems [2, 1, 11, 12]. This research agenda has been put forward, in part, due

to the emergence of the Internet, which is managed and shared by multiple administrative

authorities and users with possibly competing interests. At the heart of the game theoretic

view is the assumption that the players have strategic considerations and act to minimize

their own cost, rather than optimizing the global objective. In resource allocation settings,

this would mean that each job chooses a resource instead of being assigned to a resource by

a central designer. The focus in game theory is on the stable outcomes of a given setting,

or the equilibrium points. A Nash equilibrium (NE) is a profile of the users’ strategies such

that no user can decrease its cost by a unilateral deviation from its current strategy (given

that the strategies of the remaining users do not change).

Since the users’ cost functions lead them in their decisions, the assumptions on the cost

functions lie at the heart of any game theoretic treatment of the problem. The literature

is divided into two main approaches with respect to the cost function. The first class of

models emphasizes the negative congestion effect, and assumes that the cost of a resource

is some non-decreasing function of its load. Job scheduling [9] and selfish routing belong

[13, 7] to this class of models. The second class of models assumes that each resource has

some activation cost, which should be covered by its users. In this case, a user usually

wishes to share its resource with as many additional users in attempt to decrease its share

in the activation cost. Roughly speaking, the cost of using a resource in this class is some

decreasing function of its load. Network design games [1, 4] and bin packing games [5] belong

to the second class of models.

While the first class ignores the positive congestion effects and the second ignores the

negative congestion effects, both effects take place in practice. On the one hand, a heavy-

loaded resource might be less preferred due to negative congestion effects; on the other hand,

resources do have some activation cost, and sharing this cost with other users releases the

burden on a single user.

2

1.2 Existing model

A game instance G = 〈I, B〉, consists of a set of n jobs, each job has a length pj (processing

time, bandwidth requirement, etc.) associated with it. Let I = {p1, . . . , pn} denote the jobs

lengths (also called weights). A set of identical resources M = {M1,M2, . . .} (machines,

links, etc.) is given as well, each having an activation cost B. We use the terminology of job

scheduling for simplicity of presentation though the model is general and can be used in a

vast variety of games.

The action space Sj of a player j is defined as all the individual resources. i.e. Sj = M .

The joint action space is S = ×nj=1Sj. In a joint action s ∈ S, player j select machine sj
as its action. We denote by Rs

i the set of players on machine Mi in the joint action s ∈ S,

i.e. Rs
i = {j : sj = Mi}. The load of Mi in s, denoted by Li(s), is the sum of lengths

of the players that chose machine Mi. In particular, a player can choose to be assigned

to a dedicated machine (i.e., assigned to a machine with no additional jobs). In this case,

Li(s) = pj.

The cost function of player j, denoted by cj, maps a joint action s ∈ S to a real number,

and is composed of two components: one depends on the total load on the chosen resource,

and the other is its share in the resource’s activation cost. The cost of player j under a joint

action s in which sj = Mi is cj(s) = f(Li(s), bj(s)), where Li(s) =
∑

j∈Rs
i
pj is the total load

of players served by Mi, and bj(s) is j ’s share in the cost of B. In [8], cj(s) is assumed to be

equal to Li(s) + bj(s).

The resources activation cost may be shared among its users according to different shar-

ing rules, two of which are considered in [8]. The sharing rules are: the uniform sharing rule

and the proportional sharing rule.

Uniform sharing rule: Under the uniform sharing rule, all jobs assigned to a particular

resource share its activation cost equally. Formally, a job j assigned to Mi under joint action

s pays bj(s) =
B

|Rs
i |

. For example, let G = 〈I = {1, 2}, B = 12〉 and let s be an assignment

in which all jobs are assigned to the same machine. Then, under the uniform sharing rule

the jobs’ costs will be as follows: c1(s) = c2(s) = 3 + 12/2 = 9.

3

Proportional sharing rule: Under the proportional rule, all jobs assigned to a particular

resource share its activation cost proportionally to their sizes. Formally, a job j assigned to

Mi under joint action s pays bj(s) =
pjB

Li(s)
. Under the proportional sharing rule, the jobs

from the previous example will now pay c1(s) = 3+1 ·12/3 = 7 and c2(s) = 3+2 ·12/3 = 11.

It was shown in [8] that under the uniform sharing rule equilibria might not exist. There-

fore, in the subsequent sections we focus on the proportional sharing rule.

1.3 Definitions

Definition 1. (Nash Equilibrium) A joint action is said to be a pure Nash Equilibrium (NE)

if no player can benefit from unilaterally switching from his action to a different action.

Formally, a joint action s ∈ S is said to be pure Nash Equilibrium if for all players i, such

that i ∈ N and each alternative joint action s̄ ∈ S

ci(s̄) ≥ ci(s)

Definition 2. (Price of Stability) The Price of Stability (PoS) is a measure of inefficiency

designed to differentiate between games in which all equilibria are inefficient and those in

which some equilibrium is inefficient. Formally, the Price of Stability of a game instance is

the ratio between the value of best Nash Equilibrium and the value of optimal solution.

PoS =
value of best Nash Equilibrium

value of optimal solution

Definition 3. (Weakly Pareto optimal Nash Equilibrium) A Nash Equilibrium joint action

is said to be Weakly Pareto optimal Nash Equilibrium (wPNE) if there is no joint action in

the entire action space in which every player is strictly better off than he was as a result of

the current joint action. Formally, a Nash Equilibrium s ∈ S is said to be Weakly Pareto

optimal Nash Equilibrium if there is no joint action s̄ ∈ S such that for all i ∈ N

ci(s̄) < ci(s)

4

Definition 4. (Strictly Pareto optimal Nash Equilibrium) A Nash Equilibrium joint action

is said to be Strictly Pareto optimal Nash Equilibrium (sPNE) if there is no other joint action

in the entire action space in which at least one player is strictly better off and no player is

worse off than he was as a result of the current joint action. Formally, a Nash Equilibrium

s ∈ S is said to be Strictly Pareto optimal Nash Equilibrium if there is no joint action s̄ ∈ S
and i∗ ∈ N such that for all i ∈ N \ i∗

ci(s̄) ≤ ci(s) and ci∗(s̄) < ci∗(s)

A Weakly Pareto optimal Nash Equilibrium satisfies a less stringent requirement than

Strictly Pareto optimal Nash Equilibrium, thus every Strictly Pareto optimal Nash Equi-

librium is also a Weakly Pareto optimal Nash Equilibrium. The opposite is not true, since

a Weakly Pareto optimal Nash Equilibrium is not necessarily Strictly Pareto optimal Nash

Equilibrium.

Definition 5. A vector (L1, L2, . . . , Lm) is smaller than vector (L̄1, L̄2, . . . , L̄m) lexicograph-

ically if for some i, Li < L̄i and Lk = L̄k for all k < i. A schedule s is smaller than schedule

s′ lexicographically if the vector of machine loads L(s) = (L1(s), L2(s), . . . , Lm(s)) sorted in

non-increasing order, is smaller lexicographically than L(s′), sorted in non-increasing order.

1.4 Previous work

Models which emphasize either the negative congestion effect ([9, 13, 7]) or the positive

congestion effect ([1, 4, 5]), but not both, are being utilized in a vast variety of games (job

scheduling, selfish routing, network design, bin packing, etc.). In practice, in many of this

games, both the positive and the negative effects take place simultaneously.

The model in which both effects take place simultaneously is thoroughly examined in [8].

In the remainder of this section we refer to the aspects studied in [8]. Two different sharing

rules are introduces in [8] according to which the resource activation cost is shared among

its users: uniform sharing rule and proportional sharing rule. It is shown that in the uniform

sharing rule model, a pure NE might not exist, while in the proportional sharing model,

a pure NE always exists. The NE achieved in the proportional sharing rule model may

not be socially optimal. Its inefficiency is quantified in [8] according to the well-established

measurements, the Price of Anarchy (PoA) and the Price of Stability (PoS). It is shown

that the PoA is not bounded, while the PoS is bounded by an upper bound of 5/4 and by

a lower bound of 18/17.

5

1.5 New results

In our work all the new results refer to resource allocation games under the proportional

sharing rule and unlimited supply of resources. In Section 2.1 we show that Strictly Pareto

optimal Nash Equilibrium [10, 6, 3] exists for games with number of players smaller than

or equal to three. In Section 2.2 we show that neither Strictly nor Weakly Pareto Optimal

Nash Equilibria exist for games with number of player greater than three. In Section 2.3 we

provide an improved lower bound on the PoS over the bound presented in Theorem 10 in

[8]. Improved lower bound was found with the assistance of a program we developed (the

program is presented in Appendix A). In Section 3 we introduce a new model that is based

on the model described in [8] and show that for this model PoS is unbounded. In addition,

we prove a number of observations, some of which are new and some are adapted versions

of observations from [8].

1.6 Preliminaries

Lemma 6 (Lemma 1 from [8]). Consider a schedule s. Suppose j ∈ Rs
i , and let ρ =

Li(s)(Li′ (s)+pj)
pj

. Job j reduces its cost by a migration to machine i′ if and only if Li′(s) + pj >

Li(s) and B > ρ or Li′(s) + pj < Li(s) and B < ρ.

Proof. The cost of j under schedule s is cj(s) = Li(s)+
pjB

Li(s)
. Let s′ be the obtained schedule

after j’s migration to machine Mi′ . It holds that cj(s
′) = Li′(s) + pj +

pjB

Li′(s) + pj
. Assume

that job j reduces its cost by a migration to machine i′ and prove that Li′(s) + pj > Li(s)

and B > ρ or Li′(s) + pj < Li(s) and B < ρ.

Li(s) +
pjB

Li(s)
> Li′(s) + pj +

pjB

Li′(s) + pj

Multiplying both sides by ρ yields

ρLi(s) +B(Li′(s) + pj) > ρ(Li′(s) + pj) +BLi(s)

Rearranging yields

ρLi(s)− ρ(Li′(s) + pj) +B(Li′(s) + pj)−BLi(s) > 0

ρ(Li(s)− (Li′(s) + pj))−B(Li(s)− (Li′(s) + pj)) > 0

(Li(s)− (Li′(s) + pj))(ρ−B) > 0

6

The inequity holds when Li(s) > (Li′(s) + pj) and ρ > B or when Li(s) < (Li′(s) + pj) and

ρ < B. One can easily verify that the opposite direction (assume that Li′(s) + pj > Li(s)

and B > ρ or Li′(s) + pj < Li(s) and B < ρ and prove that job j reduces its cost by a

migration to machine i′) holds as well using the same inequity.

Observation 7 (Observation 1 from [8]). In any joint action s, for every job j, cj(s) ≥
2
√
pjB. Additionally, for every j, such that pj ≥ B, cj(s) ≥ pj +B.

Proof. The cost of j when assigned together with a (possibly empty) set of jobs with total

length z is cj(s) = pj + z +
pjB

pj+z
. This term gets its minimal value for z =

√
pjB − pj,

for which cj(s) = 2
√
pjB. Hence, for every job j,cj(s) ≥ 2

√
pjB. If pj ≥ B then the cost

is minimized for z = 0, for which, cj(s) = pj + B. Hence for every j, such that pj ≥ B,

cj(s) ≥ pj +B.

Observation 8. (i) A job j of length pj < B which is assigned to a machine of load smaller

than B together with a (possibly empty) set of jobs, will not decrease its cost by migrating to

a machine of load greater than or equal to B − pj > 0. (ii) A job j of length pj < B which

is assigned to a machine of load smaller than B together with a non empty set of jobs will

increase its cost by migrating to a dedicated machine.

Proof. Suppose that v is the total length of a (possible empty) set of jobs assigned together

with job j to machine with load smaller than B. 0 ≤ v and v+pj < B, thus 0 ≤ v < B−pj.
The cost of job j before migration is cj(s) = pj +v+

pjB

pj+v
. Suppose that z is the total length

of non empty set of jobs assigned to machine with load greater than or equal to B − pj (the

machine j prefers to migrate to). Thus, z ≥ B − pj > 0. The cost of job j after migration

is cj(s
′) = pj + z +

pjB

pj+z
. v < B − pj and z ≥ B − pj resulting in z > v. We show that

cj(s
′) ≥ cj(s).

pj + z +
pjB

pj + z
≥ pj + v +

pjB

pj + v

Multiplying both sides by (pj + z)(pj + v) yields

z(pj + z)(pj + v) + pjB(pj + v) ≥ v(pj + z)(pj + v) + pjB(pj + z)

pj
2z + pjz

2 + pjvz + vz2 + pjvB ≥ pj
2v + pjv

2 + pjvz + v2z + pjzB

7

Rearranging yields

pj
2z − pj2v + pjz

2 − pjv2 + vz2 − v2z + pjvB − pjzB ≥ 0

pj
2(z − v) + pj(z

2 − v2) + vz(z − v)− pjB(z − v) ≥ 0

pj
2(z − v) + pj(z − v)(z + v) + vz(z − v)− pjB(z − v) ≥ 0

(z − v)(p2j + pj(z + v) + vz − pjB) ≥ 0

We showed that z > v, thus we only need to prove that p2j + pj(z + v) + vz − pjB ≥ 0

p2j + pj(z + v) + vz − pjB ≥ 0

pj(pj + z + v −B) + vz ≥ 0

By definition z ≥ B − pj, hence z + pj ≥ B. In addition v ≥ 0 and z > 0, resulting in

pj + z + v −B ≥ 0 and pj(pj + z + v −B) + vz ≥ 0.

(ii) Let L = αB be the load of the machine to which pj is assigned, for 0 < α < 1.

The cost of j when assigned to a machine of load smaller than B together with a non empty

set of jobs is cj(s) = L +
pjB

L
= αB +

pjB

αB
. The cost of j when assigned to a dedicated

machine is cj(s
′) = pj +B. We show that cj(s

′) > cj(s).

pj +B > αB +
pjB

αB

pj +B > αB +
pj
α

Multiplying both sides by α yields

αpj + αB > α2B + pj

αpj − pj > α2B − αB
pj(α− 1) > αB(α− 1)

Multiplying both sides by

(
1

α− 1

)
yields

pj < αB

By definition L is equal to αB, hence we obtain

pj < L

8

Observation 9. Given an assignment s such that job j is assigned to machine Mi and for

every i′, such that i′ 6= i, Li′(s) + pj ≥ Li(s), if Li(s) + Li′(s) ≥ B then a migration of job

j from machine i to machine i′ is not beneficial.

Proof. First we show that the Observation holds for Li′(s) + pj > Li(s). Assume that

Li(s) + Li′(s) ≥ B. By Lemma 6, it is beneficial for j to migrate to machine i′ if and

only if B > ρ =
Li(s)(Li′ (s)+pj)

pj
. Job j is assigned to machine i, hence pj = αLi(s) for

some 0 < α ≤ 1. The migration condition can be rewritten as B >
Li(s)(Li′ (s)+αLi(s))

αLi(s)
=

Li′ (s)
α

+Li(s) ≥ Li′(s)+Li(s). It is a contradiction to the assumption that Li(s)+Li′(s) ≥ B.

Next we show that the Observation holds for Li′(s) + pj = Li(s). The cost of job j under

schedule s is cj(s) = Li(s) +
pjB

Li(s)
. Let s′ denote the schedule obtained after j’s migration to

machine i′. The cost of job j under schedule s′ is cj(s
′) = Li′(s)+pj+

pjB

Li′ (s)+pj
= Li(s)+

pjB

Li(s)
.

The cost of job j before the migration is identical to the cost after the migration (cj(s) =

cj(s
′)), therefore the migration is not beneficial.

Observation 10. If B ≥
∑

j pj, then the schedule s in which all jobs are assigned to a single

machine is a NE.

Proof. All jobs are assigned to a single machine, therefore an arbitrary job j can migrate

to a dedicated machine only. We show that a migration is not beneficial and therefore

schedule s is a NE. If a game instance consists of a single job, this job cannot benefit from

migration (from a dedicated machine) to a dedicated machine, therefore the Observation

holds trivially. Otherwise, the game instance consists of at least two jobs. First, we show

that the Observation holds for B >
∑

j pj. Assume that B >
∑

j pj. By definition B > pj
for every j. By Observation 8(ii), a job j of length pj < B which is assigned to a machine

of load smaller than B will increase its cost by migrating to a dedicated machine.

Next we now show that the Observation holds for B =
∑

j pj. Assume that B =
∑

j pj.

By definition B ≥ pj. The cost of job j under schedule s is cj(s) = B +
pjB

B
= B + pj. Let

s′ denote the schedule obtained after j’s migration to a dedicated machine. The cost of job

j under schedule s′ is cj(s
′) = pj + B and is equal to the cost before the migration, hence

the migration is not beneficial.

In the subsequent sections, job’s lengths are assumed to be positive in all the game

instances we present.

9

2 Equilibria existence

In the following section we would like to analyze Equalibria existence under the proportional

sharing rule.

2.1 Existence of Strictly Pareto optimal Nash Equilibria

In this section we prove that under the proportional sharing rule and unlimited supply of

resources a sPNE always exists for game instances with number of players smaller than or

equal to three. In the Preliminaries section, we showed that every sPNE is also a wPNE,

thus existence of sPNE results in existence of wPNE. We prove that sPNE always exists by

presenting a particular joint action which is a sPNE.

Claim 11 (Claim 2 from [8]). Let s be a lexicographically minimal assignment and suppose

that job j is assigned to machine Mi. Then, Li′(s) + pj ≥ Li(s) for every i 6= i′.

Proof. If Li′(s) ≥ Li(s), then Li′(s) + pj ≥ Li(s) (the statement holds trivially). Other-

wise, Li′(s) < Li(s). Suppose by way of contradiction that Li′(s) + pj < Li(s), then the

schedule that assigns the job j to machine of load Li′(s) produces an assignment which is

lexicographically smaller than assignment s, in contradiction to minimality of s.

Given an instance of jobs I, let Ishort ⊆ I be a subset of jobs having length smaller than

B. Let sk be the lexicographically minimal assignment of Ishort on k machines. Let m be

the minimal integer such that the makespan under sm is smaller than B. Note that m is

well defined, since all participating jobs are smaller than B.

Let s be the schedule in which: (i) Every j such that pj ≥ B is assigned to a dedicated

machine (ii) The jobs of Ishort are assigned according to sm.

Theorem 12 (Theorem 3 from [8]). Schedule s is a NE.

Proof. If m = 1, then all jobs are jointly assigned to a single machine of load smaller than B.

By Observation 10 schedule s is a NE. Otherwise, m ≥ 2. We prove that schedule s is NE by

showing that none of the possible migrations is beneficial. By Observation 7, no long job (a

job j such that pj ≥ B) can benefit from migration. By Observation 8(i), no short job (a job

j such that pj < B) can benefit from joining a long job. By Observation 8(ii), no short job

can benefit from activating a new machine. It remains to show that no short job can benefit

from migrating to another machine of s of load smaller than B. Let j be a short job assigned

to machine Mi. By Claim 11, Li′(s) + pj ≥ Li(s) for every i′, such that i′ 6= i. Assume

10

by way of contradiction that there exist i′, such that i′ 6= i, for which Li(s) + Li′(s) < B.

Consider the schedule which is identical to s except the jobs assigned to machines i and i′

are jointly assigned to a single machine. This schedule produces a makespan smaller than

B on m− 1 machines. It is a contradiction to the choice of m. Thus, Li(s) +Li′(s) ≥ B for

every i′, such that i 6= i′. We already showed that Li′(s) + pj ≥ Li(s) for every i′, such that

i′ 6= i. Therefore, by Observation 9, migration of job j from machine i to any other machine

i′ of s is not beneficial.

We now show that schedule s is a sPNE. In schedule s, for every long job j, cj(s) = pj+B.

By Observation 7, for job j such that pj ≥ B, cj(s) ≥ pj + B. Hence, for every schedule

s̄, such that s̄ 6= s, cj(s̄) ≥ cj(s). Therefore, we focus on games with jobs of length smaller

than B. We prove that schedule s is a sPNE by showing that there is no schedule s̄, such

that s̄ 6= s, in which at least one player is strictly better off and no player is worse off.

We start with a game instance with three players. Consider schedule s̄, such that s̄ 6= s.

Distinguish between three cases:

1. Under schedule s, all jobs are assigned to a single machine of load smaller than B (figure

1). Under schedule s̄ (Figure 1a, Figure 1b), at least one of the jobs must be assigned to

a dedicated machine. We denote this job by j. By Observation 8(ii), cj(s̄) > cj(s). Thus,

schedule s̄ does not contradict the claim that schedule s is a sPNE.

(a) Jobs are assigned to three machines in s̄

(b) Jobs are assigned to two machines in s̄

Figure 1: All jobs are assigned to single machine in s

11

2. Under schedule s, jobs are assigned to two machines, each of load smaller than B (figure

2). Assume without loss of generality that jobs J1 and J2 are assigned to machine M1 and

job J3 is assigned to machine M2. We distinguish between three sub cases:

a. Under schedule s̄ (Figure 2a), all jobs are assigned to dedicated machines (particularly

job J1 and job J2). By Observation 8(ii), cJ1(s̄) > cJ1(s) and cJ2(s̄) > cJ2(s). Thus,

schedule s̄ does not contradict the claim that schedule s is a sPNE.

b. Under schedule s̄ (Figure 2b), the number of machines remains unchanged. One of the

jobs that are assigned together in schedule s (job J1 or job J2) is assigned to a dedicated

machine in schedule s̄. Assume without loss of generality that under schedule s̄, job J2 is

assigned to a dedicated machine. By Observation 8(ii), cJ2(s̄) > cJ2(s). Thus, schedule s̄

does not contradict the claim that schedule s is a sPNE.

c. Under schedule s̄ (Figure 2c), jobs J1, J2 and J3 are assigned together to a single machine

M ′
1. If the load of the machine is smaller than B it is a contradiction to the choice of

m. We now examine the case where the load of M ′
1 is equal to or greater than B. We

assumed that under schedule s, jobs J1 and J2 are assigned together (to machine M1)

and job J3 is assigned to a dedicated machine (to machine M2). Let z denote pJ1 + pJ2 .

Under schedule s, job J1 pays cJ1(s) = z + (pJ1B)/z. Under schedule s̄, job J1 pays

cJ1(s̄) = z + pJ3 + pJ1B/(z + pJ3). We now show that cJ1(s) < cJ1(s̄).

z +
pJ1B

z
< z + pJ3 +

pJ1B

z + pJ3
pJ1B

z
< pJ3 +

pJ1B

z + pJ3

Multiplying both sides by z(z + pJ3) yields

zpJ1B + pJ1pJ3B < z(z + pJ3)pJ3 + zpJ1B

pJ1pJ3B < z(z + pJ3)pJ3

pJ1B < z(z + pJ3)

We assumed that pJ1 + pJ2 + pJ3 ≥ B, i.e, z + pJ3 ≥ B. In addition, z = pJ1 + pJ2 > pJ1 .

Hence, the inequality holds. We showed that schedule s̄ does not contradict the claim

that schedule s is a sPNE.

12

(a) Jobs are assigned to three machines in s̄

(b) Jobs are assigned to two machines in s̄

(c) Jobs are assigned to single machine in s̄

Figure 2: Jobs are assigned to two machines in s

3. Jobs are assigned to three (dedicated) machines each of load smaller than B in s (Figure

3). We distinguish between two sub cases:

a. In schedule s̄ (Figure 3a) jobs are assigned to two machines. Assume without loss of

generality that under schedule s̄, jobs J1 and J2 are assigned to a single machine (to

machine M ′
1) and job J3 is assigned to another, dedicated machine (to machine M ′

2). If

the makespan under s̄ is smaller than B, it is a contradiction to the choice of m. Consider

that the makespan under s̄ is equal to or greater than B. The load of machine M ′
2 is

smaller than B because only job J3 (which length is smaller than B) is assigned to it. The

makespan under s̄ is equal to or greater than B therefore the load of machine M ′
1 must be

equal to or greater than B. Under schedule s, job J1 pays cJ1(s) = pJ1+B. Under schedule

s̄, job J1 is assigned together with job J2 and pays cJ1(s̄) = pJ1 +pJ2 + (pJ1B)/(pJ1 +pJ2).

13

We now show that cJ1(s) ≤ cJ1(s̄).

pJ1 +B ≤ pJ1 + pJ2 + pJ1B/(pJ1 + pJ2)

B ≤ pJ2 + pJ1B/(pJ1 + pJ2)

Multiplying both sides by (pJ1 + pJ2) yields

pJ1B + pJ2B ≤ (pJ1 + pJ2)pJ2 + pJ1B

pJ2B ≤ (pJ1 + pJ2)pJ2

B ≤ pJ1 + pJ2

We assumed that pJ1 + pJ2 ≥ B, hence, the inequality holds. It can be shown in a similar

way that cJ2(s) ≤ cJ2(s̄). Job J3 is assigned to a dedicated machine under schedule s̄,

which means that its cost remains unchanged. We showed that under schedule s̄, there

is no job that is strictly better off, thus schedule s̄ does not contradict the claim that

schedule s is a sPNE.

b. In schedule s̄ (Figure 3b) jobs J1, J2 and J3 are assigned together to a single machine

M ′
1. If the load of the machine is smaller than B it is a contradiction to the choice of m.

Consider that the load of the machine is equal to or greater than B. Under schedule s,

job J1 pays cJ1(s) = pJ1 + B. Under schedule s̄, all jobs are jointly assigned to a single

machine and job J1 pays cJ1(s̄) = pJ1 + pJ2 + pJ3 + pJ1B/(pJ1 + pJ2 + pJ3). We now show

that cJ1(s) ≤ cJ1(s̄).

pJ1 +B ≤ pJ1 + pJ2 + pJ3 + pJ1B/(pJ1 + pJ2 + pJ3)

B ≤ pJ2 + pJ3 + pJ1B/(pJ1 + pJ2 + pJ3)

Multiplying both sides by (pJ1 + pJ2 + pJ3) yields

pJ1B + pJ2B + pJ3B ≤ pJ2(pJ1 + pJ2 + pJ3) + pJ3(pJ1 + pJ2 + pJ3) + pJ1B

pJ2B + pJ3B ≤ pJ2(pJ1 + pJ2 + pJ3) + pJ3(pJ1 + pJ2 + pJ3)

We assumed that pJ1 + pJ2 + pJ3 ≥ B, hence, the inequality holds. It can be shown in

a similar way that cJ2(s) ≤ cJ2(s̄) and cJ3(s) ≤ cJ3(s̄). We showed that under schedule

s̄, there is no job that is strictly better off, thus schedule s̄ does not contradict the claim

that schedule s is a sPNE.

14

(a) Jobs are assigned to two machines in s̄

(b) Jobs are assigned to single machine in s̄

Figure 3: Jobs are assigned to three machines in s

If a game instance with three players consists of long jobs only, then the claim that

schedule s is a sPNE holds trivially. Otherwise, short jobs participate in the game as well.

For such a game instance, we showed that there is no schedule s̄, such that s̄ 6= s, in which

at least one player is strictly better off and no player is worse off. Therefore, schedule s is a

sPNE. It remains to show that in a game instance with two players, schedule s is a sPNE as

well. In a game instance with two players, under schedule s, jobs are either jointly assigned

to a single machine or separately assigned to two dedicated machines. Consider the schedule

in which jobs are assigned to a single machine. The proof that this schedule is a sPNE

is very similar to the proof for three players that are jointly assigned to single machine in

schedule s (Case 1). Consider the schedule in which jobs are assigned separately to two

dedicated machines. The proof that this schedule is a sPNE is very similar to the proof for

three players that are assigned separately to dedicated machines in schedule s (Case 3). In

a game instance with single player there is a unique schedule and there is nothing to prove.

15

2.2 Nonexistence of Pareto optimal Nash Equilibria

In this section we prove that under the proportional sharing rule and unlimited supply of

resources, Pareto Optimal Nash Equilibria (neither strict nor weak) may not exist for games

with number of players greater than three. We show this by introducing a game instance

with number of player greater than three and for which weak Pareto Optimal Nash Equilibria

do not exist (Nonexistence of weak Pareto Optimal Nash Equilibria implies nonexistence of

strict Pareto Optimal Nash Equilibria).

Consider a game instance G with one long job and a number of short jobs (at least 3

short jobs). We denote the long job by X, an arbitrary short job by S and the number of

short jobs by N (N ≥ 3). We denote by δ the length of the long job and by ε the length

of an arbitrary short job. In our game instance we choose δ ≥ 2N (δ ≥ 6) and ε = 1/N

(ε ≤ 1/3). B is the activation cost and it is equal δ +Nε+ ε = δ + 1 + ε. In Section 3.2 we

show that there is a unique NE schedule in the described game instance, a schedule in which

all jobs are assigned to a single machine. We denote this schedule by s. We now calculate

the costs all jobs in schedule s.

cj(s) = Li(s) +
pjB

Li(s)

cX(s) = δ +Nε+
δ(δ +Nε+ ε)

δ +Nε
= δ + 1 +

δ(δ + 1) + δε

δ + 1
= 2δ + 1 +

δε

δ + 1

cS(s) = δ +Nε+
ε(δ +Nε+ ε)

δ +Nε
= δ + 1 +

ε(δ + 1) + ε2

δ + 1
= δ + 1 + ε+

ε2

δ + 1
> δ + 1 + ε

We show that schedule s is not a weak Pareto Optimal Nash Equilibrium (wPNE) by

showing that there is a schedule s̄, such that s̄ 6= s, under which for every job j, ci(s̄) < ci(s).

Consider an assignment under which the long job is jointly assigned with one short job to

single machine. The remaining N−1 short jobs are assigned in pairs (two short jobs assigned

to single machine), each pair on different machine, when the number of short jobs is odd.

When the number of short jobs is even, the remaining short jobs are assigned in pairs except

for the last three short jobs that are jointly assigned in a triple (three jobs are assigned to a

single machine) (See Figure 4). We denote this schedule by s̄. In s̄, we denote an arbitrary

short job assigned together with the long job by S`, an arbitrary short job assigned in a pair by

Sp and an arbitrary short job assigned in a triple by St. In schedule s̄, the notation of the long

job, X, remains unchanged. It is important to note that pS = pS`
= pSp = pSt = ε = 1/N .

16

Figure 4: Schedule s̄ under which for every job j, cj(s̄) < cj(s)

We now calculate the costs of all jobs in schedule s̄

cX(s̄) = δ + ε+
δ(δ +Nε+ ε)

δ + ε
= δ + ε+

δ + δ(δ + ε)

δ + ε
= 2δ + ε+

δ

δ + ε

cS`
(s̄) = δ + ε+

ε(δ +Nε+ ε)

δ + ε
= δ + ε+

ε+ ε(δ + ε)

δ + ε
= δ + 2ε+

ε

δ + ε
< δ + 3ε

cSp(s̄) = 2ε+
ε(δ +Nε+ ε)

2ε
= 2ε+

δ +Nε+ ε

2
= 2ε+

δ + 1 + ε

2
< δ + 3ε

cSt(s̄) = 3ε+
ε(δ +Nε+ ε)

3ε
= 3ε+

δ +Nε+ ε

3
= 3ε+

δ + 1 + ε

3
< δ + 3ε

We now show that for every job j under schedule s̄, cj(s) > cj(s̄). We start with the long

job (X) and show that cX(s) > cX(s̄).

2δ + 1 +
δε

δ + 1
> 2δ + ε+

δ

δ + ε

1 +
δε

δ + 1
> ε+

δ

δ + ε

Multiplying both sides by (δ + 1)(δ + ε) yields

(δ + 1)(δ + ε) + δε(δ + ε) > ε(δ + 1)(δ + ε) + δ(δ + 1)

δ2 + δε+ δ + ε+ δ2ε+ δε2 > δ2ε+ δε2 + δε+ ε2 + δ2 + δ

Rearranging both sides yields ε > ε2. By definition ε ≤ 1/3, hence the inequality holds.

Therefore cj(s̄) < cj(s). It remains to show that cS(s) > cS`
(s̄), cSp(s̄), cSt(s̄). We already

showed that cS`
(s̄), cSp(s̄), cSt(s̄) < δ+ 3ε and cS(s) > δ+ 1 + ε. It is easy to verify that this

inequality holds, therefore the statement holds as well.

We showed that in this particular game instance, under schedule s̄, for every job j,

cj(s̄) < cj(s). Therefore, neither strict nor weak Pareto Optimal Nash Equilibria exist in the

game instance we introduced.

17

2.3 An improved lower bound on the PoS

In order to examine whether the lower bound of [8] on the PoS can be improved, we developed

a computer program that assisted us with this task. The program receives a game instance

(number of jobs, jobs lengths and activation cost) as input and calculates the PoS for all

possible assignments. Number of machines is assumed to be unlimited. The output of

the program is the highest PoS from among the calculated ones and the its corresponding

assignment. The program can be found in Appendix A.

With the assistance of the program we have found better PoS lower bound (1.149)

which is much higher than provided in [8](1.058). Consider the game instance G = 〈I =

{1.15, 1, 1, 1, 1}, B = 7.8〉. The social optimum schedule for this game instance is achieved

by assigning the jobs (1.15,1,1) to a single machine and the remaining jobs (1,1) to another

machine. We now calculate the cost of the social optimum schedule. For a machine with

(1,1), each job pays 2 + 7.8
2

= 5.9. In machine with (1.15,1,1), the job of length 1.15 pays

3.15 + 1.15·7.8
3.15

= 5.997 and job of length 1 pays 3.15 + 7.8
3.15

= 5.626. Therefore, the cost of

the optimum social schedule is 5.997 (incurred by the job of length 1.15). By Observation

10, the schedule under which all jobs are assigned to a single machine is a NE. We denote

this schedule by s. We now calculate the cost of s and show that it is the only NE schedule

in the game instance. Job of length 1.15 pays 5.15 + 1.15·7.8
5.15

= 6.891. Job of length 1 pays

5.15 + 7.8
5.15

= 6.664. Therefore, the cost of schedule s is 6.891. We now show that any

arbitrary schedule s̄, such that s̄ 6= s is not a NE.

Figure 5: Schedule sa

Under schedule sa, for a machine with (1,1,1,1), a job of length 1 pays 4 + 7.8
4

= 5.95.

If it migrates to machine with (1.15) it will pay 2.15 + 7.8
2.15

= 5.777 resulting in joint action

(1.15,1);(1,1,1). Therefore, migration is beneficial. Hence schedule sa is not a NE.

Figure 6: Schedule sb

Under schedule sb, for a machine with (1), the job of length 1 pays 1 + 7.8 = 8.8. It can

reduce its cost by migrating to machine with (1.15) resulting in joint action (1.15,1);(1,1,1).

Hence schedule sb is not a NE.

18

Figure 7: Schedule sc

Under schedule sc, for a machine with (1,1), a job of length 1 pays 2 + 7.8
2

= 5.9. It can

reduce its cost by migrating to machine with (1.15) resulting in joint action (1.15,1);(1;1,1).

Hence schedule sc is not a NE.

Figure 8: Schedule sd

Figure 9: Schedule se

Schedule sd and schedule se are not NE schedules. The proof is similar as for schedule sb.

Figure 10: Schedule sf

Under schedule sf , for a machine with (1.15,1), the job of length 1.15 pays 2.15+ 1.15·7.8
2.15

=

6.322. If it migrates to machine with (1,1,1) it will pay 4.15 + 1.15·7.8
4.15

= 6.311 resulting in

joint action (1);(1.15,1,1,1). Therefore, migration is beneficial. Hence schedule sf is not a NE.

Figure 11: Schedule sg

Under schedule sg, for a machine with (1), the job of length 1 pays 1+7.8 = 8.8. If it mi-

grates to machine with (1,1) it will pay 3 + 7.8
3

= 5.6 resulting in joint action (1.15,1);(1,1,1).

Therefore, migration is beneficial. Hence schedule sg is not a NE.

Figure 12: Schedule sh

19

Under schedule sh, for a machine with (1), the job of length 1 pays 1+7.8 = 8.8. If it mi-

grates to machine with (1) it will pay 2 + 7.8
2

= 5.9 resulting in joint action (1.15,1);(1);(1,1).

Therefore, migration is beneficial. Hence schedule sh is not a NE.

Figure 13: Schedule si

Under schedule si, for a machine with (1.15,1,1), a job of length 1 pays 3.15+ 7.8
3.15

= 5.626.

If it migrates to machine with (1,1) it will pay 3 + 7.8
3

= 5.6 resulting in joint action

(1.15,1);(1,1,1). Therefore, migration is beneficial. Hence schedule si is not a NE.

Figure 14: Schedule sj

Under schedule sj, for a machine with (1), a job of length 1 pays 1 + 7.8 = 8.8. If it

migrates to machine with (1) it will pay 2+ 7.8
2

= 5.9 resulting in joint action (1.15,1,1);(1,1).

Therefore, migration is beneficial. Hence schedule sj is not a NE.

Figure 15: Schedule sk

Under schedule sk, for a machine with (1.15,1,1,1), a job of length 1 pays 4.15 + 7.8
4.15

=

6.029. If it migrates to machine with (1) it will pay 2 + 7.8
2

= 5.9 resulting in joint action

(1.15,1,1);(1,1). Therefore, migration is beneficial. Hence schedule sk is not a NE.

We showed that any arbitrary schedule s̄, such that s̄ 6= s is not a NE. Hence there is a

unique NE schedule for this game instance and it is achieved when all jobs are assigned to

a single machine. We showed that the cost of the NE schedule is 6.891 and the cost of the

social optimum schedule is 5.997. Therefore, PoS = 6.891/5.997 = 1.149.

20

3 New model

In this section we introduce a different model than the one provided in [8] and examine the

PoS under it.

3.1 Model definition

Our model is identical to the model described in Section 1.2 except for the social cost

function. In our model, the social cost function is the sum of all jobs’ costs and not the

biggest job’s cost. Formally, let g(s) denote the social cost function under the joint action

s. g(s) is defined as follows g(s) =
∑
j

cj(s). The optimal social cost function is defined as

OPT = mins∈Sg(s).

3.2 PoS is unbounded

In [8], it was shown that NE always exists under the proportional sharing rule and unlimited

supply of resources. This motivates us to examine the best NE and quantify its inefficiency

under the model we introduced. In this section, we show that PoS is unbounded under the

new model. Consider a game instance G with one long job and a number of short jobs as

in Section 2.2. We denote the long job by X, an arbitrary short job by S and the number

of short jobs by N . We denote by δ the length of the long job and by ε the length of an

arbitrary short job. In our game instance we choose δ ≥ 1 and ε = 1
N

. B is the activation

cost and it is equal to δ + Nε + ε = δ + 1 + ε. Let s be a schedule in which all jobs are

assigned to a single machine. In schedule s, B ≥
∑
j

pj (results from the definition of B and

the definition of the game instance). By Observation 10 schedule s is a NE.

Claim 13. Schedule s in which all jobs are assigned to a single machine is the only NE

assignment in the given game instance.

Proof. We divide all possible assignments into two cases and examine them.

Case 1. Consider an assignment s under which the long job is assigned to a dedicated

machine. The remaining short jobs are assigned to one or more machines (Figure 16). We

show that under this schedule it is always beneficial for the long job to migrate to any other

machine in the schedule.

21

Figure 16:
X is assigned to machine i and prefers to migrate to machine i′

By Lemma 6, job j reduces its cost by a migration from machine i to machine i′ if and

only if Li′(s) + pj > Li(s) and B > ρ or Li′(s) + pj < Li(s) and B < ρ. We show that the

migration condition Li′(s) + pj > Li(s) and B > ρ is always satisfied for the long job X.

ρ =
Li(s)(Li′(s) + pj)

pj
=
δ(Li′(s) + δ)

δ
= Li′(s) + δ

At least one short job and at most N short jobs are assigned to machine i′. Hence, ε ≤
Li′(s) ≤ Nε. The above equation can be rewritten as ρ = Li′(s)+δ ≤ Nε+δ < δ+Nε+ε =

B. We obtained that B > ρ. On the other hand Li′(s)+pj ≥ ε+δ > δ = Li(s). We obtained

that Li′(s) + pj > Li(s). Hence the migration condition is satisfied and the long job will

always prefer to migrate to machine i′ (any other machine in schedule s) no matter how

many short jobs are assigned to it. Therefore, the examined schedule is not an NE.

Case 2. Consider an assignment s under which the long job is jointly assigned together

with n short jobs, such that 1 ≤ n < N (if n = N then all jobs would be assigned to a single

machine). The rest of the short jobs are assigned to one or more (other) machines (Figure

17). Assume without loss of generality that m short jobs are jointly assigned to machine i′,

such that 1 ≤ m < N . We show that in the described assignment it is always beneficial for

a short job that is assigned together with the long job to migrate to a machine that has only

short jobs assigned to it.

22

Figure 17: 1 ≤ n,m < N

Arbitrary short job S, that is assigned to machine i, prefers to migrate to machine i′

We show that the migration condition Li′(s) + pj < Li(s) and B < ρ is always satisfied

for the short job.

ρ =
Li(s)(Li′(s) + pj)

pj
=

(δ + nε)(mε+ ε)

ε

=
ε(δ + nε)(m+ 1)

ε
= (δ + nε)(m+ 1)

According to the game instance’s definition, δ ≥ 1 and Nε = 1. We also assumed that under

schedule s, n,m ≥ 1. The above equation can be rewritten as

ρ = (δ + nε)(m+ 1) = δm+ δ + nmε+ nε

> δ + 1 + nε = δ +Nε+ nε > δ +Nε+ ε = B

We obtained that B < ρ. It remains to show that Li′(s) + pj < Li(s). We assumed that

m < N , resulting in mε < Nε = 1 ≤ δ. We also assumed that 1 ≤ n, resulting in ε ≤ nε.

Therefore, Li′(s) + pj = mε + ε < δ + ε ≤ δ + nε = Li(s). Hence, the migration condition

is satisfied and the short job will always prefer to migrate to machine i′ (i.e to any other

machine in schedule s) no matter how many short jobs are assigned to it. Therefore, the

examined schedule is not an NE.

Therefore, the only NE schedule is the schedule under which all jobs are assigned to a single

machine

We now show that for the examined game instance, PoS is unbounded. In Section 2.2

we introduced a game instance for which Strict Pareto Optimal Nash Equilibrium might

not always exist. The game instance from section 2.2 (δ ≥ 6) is a special case of the game

instance we introduced here (δ ≥ 1). We already calculated the costs of all the involved jobs

23

in Section 2.2, which remains the same.

cX(s) = 2δ + 1 +
δε

δ + 1

cS(s) = δ + 1 + ε+
ε2

δ + 1

The social cost under schedule s is

g(s) =
∑
j

cj(s) = cX(s) +N · cS(s)

= 2δ + 1 +
δε

δ + 1
+N

(
δ + 1 + ε+

ε2

δ + 1

)
= 2δ + 1 +

δε

δ + 1
+Nδ +N + 1 +

Nε · ε
δ + 1

= δ(2 +N) + (2 +N) +
δε

δ + 1
+

ε

δ + 1

= (δ + 1)(N + 2) +
ε(δ + 1)

δ + 1
= (N + 2)(δ + 1) + ε

In our proof we will refer to the schedule under which the long job is assigned to a dedi-

cated machine and all the remaining short jobs are assigned to a different (single) machine

as the social optimum schedule. We denote this schedule by s̄. This schedule may not be

the best social optimum schedule. The cost of the actual social optimum schedule may be

smaller than or equal to the one we chose. Therefore, if we show that PoS is unbounded

for this social optimum schedule, it will be true for the actual social optimum schedule as well.

We now calculate the costs of all jobs under the optimum schedule s̄.

cX(s̄) = δ +B = δ + δ +Nε+ ε = 2δ + 1 + ε

cS(s̄) = Nε+
ε(δ +Nε+ ε)

Nε
= 1 + δε+ ε+ ε2

The social cost under the optimum schedule s̄ is

OPT =
∑
j

cj(s̄) = cX(s̄) +NcS(s̄)

= 2δ + 1 + ε+N(1 + δε+ ε+ ε2)

= 2δ + 1 + ε+N +Nεδ +Nε+Nε2

= 2δ + 1 + ε+N + δ + 1 + ε = 3δ +N + 2 + 2ε

24

We now calculate the PoS.

PoS =
g(s)

OPT
=

(N + 2)(δ + 1) + ε

3δ +N + 2 + 2ε
=

(N + 2)(δ + 1) + 1
N

3δ +N + 2 + 2
N

(1)

The values N and δ are arbitrary and any value within the game instance’s boundaries (δ ≥ 1

and N ≥ 1) can be assigned to them. First, let δ to be equal N + 2. Equation (1) can be

rewritten as

PoS =
(N + 2)(δ + 1) + 1

N

3δ +N + 2 + 2
N

=
(N + 2)(N + 2 + 1) + 1

N

4(N + 2) + 2
N

(2)

Next, we let N to be big enough so that 1
N

will be negligible. Let N ′ denote N+2. Equation

(2) can be rewritten once again as

PoS =
(N + 2)(N + 2 + 1) + 1

N

4(N + 2) + 2
N

→ N ′(N ′ + 1)

4N ′
=

N ′ + 1

4
(3)

From Equation (3) it is clear that for any given r, there exist instances for which PoS > r.

Therefore, PoS is unbounded.

25

References

[1] E. Anshelevich, A. Dasgupta, J. M. Kleinberg, É.Tardos, T. Wexler, and T. Rough-

garden. The price of stability for network design with fair cost allocation. In Proc.

of the 45st Annual Symposium on Foundations of Computer Science (FOCS’04),

pages 295–304, 2004.

[2] S. Albers, S. Elits, E. Even-Dar, Y. Mansour, and L. Roditty On Nash Equilibria

for a Network Creation Game. In Proc. of the 17th ACM-SIAM Symposium on

Discrete Algorithms (SODA’06), pages 89–98, 2006.

[3] S. Chien, A. Sinclair. Strong and pareto price of anarchy in congestion games.

In . Proc. of the 36th International Colloquium on Automata, Languages and Pro-

gramming (ICALP’09), pages 279–291, 2009.

[4] A. Epstein, M. Feldman, and Y. Mansour. Strong Equilibrium in Cost Sharing

Connection Games. In Proc. of the 8th ACM Conference on Electronic Commerce

(EC’07), pages 84–92, 2007.

[5] L. Epstein and E. Kleiman. Selfish bin packing. In Proc. of the 16th Annual

European Symposium on Algorithms (ESA’08), pages 368–380, 2008.

[6] L. Epstein, S. O. Krumke, A. Levin and H. Sperber. Selfish bin coloring. Journal

of Combinatorial Optimization (JCO), 2010.

[7] D. Fotakis, S. Kontogiannis, M. Mavronicolas, and P. Spiraklis. The Struc-

ture and Complexity of Nash Equilibria for a Selfish Routing Game. Theoretical

Computer Science (TCS), 410(36):3305-3326, 2009.

[8] M. Feldman and T. Tamir. Conflicting Congestion Effects in Resource Alloca-

tion Games. In Proc. of the 4th International Workshop on Internet and Network

Economics (WINE’08), pages 109–117, 2008.

[9] R. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of

Applied Mathematics (SIAMAM), 17(2):416-429, 1969.

[10] R. Holzman, N. Law-Yone. Strong equilibrium in congestion games. Games and

Economic Behaviour, 21(1-2), pages 85–101, 1997

26

[11] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proc. of the

16th Annual Symposium on Theoretical Aspects of Computer Science (STACS’99),

pages 404–413, 1999.

[12] N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani. Algorithmic Game

Theory. Cambridge University Press, 2007.

[13] T. Roughgarden and É. Tardos. How bad is selfish routing? In Proc. of the

41st Annual Symposium on Foundations of Computer Science (FOCS’00), pages

93–102, 2000.

27

Appendix A - Computer program

1 import sys

2
3 def assignmentsGenerator(rJobLengths):

4 """ Assignments generator

5
6 This is not a recursive function but a generator. Each time it

7 is called it returns a unique assignment that was not yet

8 returned. Same results can be achieved with the help of

9 recursion , but it will much more memory and time consuming.

10
11 \param rJobLengths jobs ' lengths

12 """

13
14 if 2 == len(rJobLengths):

15 yield [[rJobLengths[0]], [rJobLengths[1]]]

16 yield [[rJobLengths[0], rJobLengths[1]]]

17 else:

18 for assignment in assignmentsGenerator(rJobLengths[1:]):

19 retAssignment = [[rJobLengths[0]]]

20 retAssignment.extend(assignment [:])

21 yield retAssignment

22
23 for element in assignment:

24 retAssignment = assignment [:]

25 retAssignment.remove(element)

26 yield [[rJobLengths[0]] + element] + retAssignment

27 #endfor

28 #endfor

29 #endif

30 #enddef

31
32
33 def calculateCost(rActivationCost , rAssignment):

34 """ Calculate cost of an assignment and check if it is a NE

35
36 \param rActivationCost activation cost

37 \param rAssignment assignment

38 \return List containing two element. If the given assignment

39 is a NE, first element will be set to True ,otherwise

40 it will be set to False. Second element is the

41 assignment cost.

28

42 """

43
44 isNE = True

45
46 # calculate the load on (all) machines

47 machinesLoad = []

48 for machine in rAssignment:

49 singleMachineLoad = 0.0

50 for job in machine:

51 singleMachineLoad += job

52 #endfor

53 machinesLoad += [singleMachineLoad]

54 #endfor

55
56 assignmentCost = 0

57 for i in range(len(rAssignment)):

58 for job in rAssignment[i]:

59 # rAssignmetn[i] is de facto machine i under the examined

60 # assignment

61 cost = 0.0

62
63 # calculate the cost of of a signle job assigned to machine i

64 cost = machinesLoad[i] + \

65 ((job * rActivationCost) / machinesLoad[i])

66
67 # calculate the assignment cost (makespan)

68 assignmentCost = max(assignmentCost , cost)

69
70 # check if it worth migrating to a dedicated machine. if

71 # the migration is beneficial , then the currectassignment

72 # is not NE.

73 if (cost > (job + rActivationCost)):

74 isNE = False

75 continue

76 #endif

77
78 # check if it worth migrating to any other machine.if the

79 # migration is beneficial , then the currect assignment is

80 # not NE.

81 for k in range(len(rAssignment)):

82 if i == k: # skip current machine

83 continue

84 #endif

85
86 L1 = machinesLoad[k] # other machine 's load

29

87 L = machinesLoad[i] # current machine 's load

88 rho = 0.0

89 rho = (L * (L1 + job)) / job

90
91 # we use Lemma 6 to check if it worth migrating.

92 if (((L1 + job) > L) and (rActivationCost > rho)) or \

93 (((L1 + job) < L) and (rActivationCost < rho)):

94 isNE = False

95 #endif

96 #endfor

97 #endfor

98 #endfor

99
100 if True == isNE:

101 return [True , assignmentCost]

102 else:

103 return [False , assignmentCost]

104 #endif

105 #enddef

106
107
108 def calculatePOS(rActivationCost , rJobLengths):

109 """ Calculate Price Of Stability (PoS) for the given game

110
111 \param rActivationCost activation cost

112 \param rJobLengths jobs ' lengths

113 \return PoS value

114 """

115
116 socialOpt = 0.0

117 socialSet = None

118 neAssignments = []

119
120 for schedule in assignmentsGenerator(rJobLengths):

121 # calculate assignment cost

122 retVal = calculateCost(rActivationCost , schedule)

123
124 # if assignment cost is smaller than social optimum let it be

125 # the new social optimum

126 if (0 == socialOpt):

127 socialOpt = retVal[1]

128 socialSet = schedule

129 elif (retVal[1] < socialOpt):

130 socialOpt = retVal[1]

131 socialSet = schedule

30

132 #endif

133
134 # if assignment is NE , append it to NE assignments list

135 if True == retVal[0]:

136 neAssignments.append ([schedule , retVal[1]])

137 #endif

138 #endfor

139
140 pos = 0.0

141
142 # by Theorem 12, NE always exists for the examined model under

143 # the proportional sharing rule. thus , PoS is well defined.find

144 # best NE and calculate PoS.

145 if neAssignments:

146 #find the best NE value

147 bestNE = reduce(lambda x, y: [[], min(x[1], y[1])], \

148 neAssignments)[1]

149
150 # filter NE assignments. Leave only these which cost equal to

151 # bestNE

152 neAssignments = filter(lambda x: x[1] == bestNE , \

153 neAssignments)

154
155 # socialOpt never equals 0

156 pos = bestNE / socialOpt

157
158 # list all best nash equilibria assignments

159 print 'best nash equilibrium cost=%f' % bestNE

160 print 'best nash equilibrium schedules '

161 for ne in neAssignments:

162 print ne[0]

163 #endfor

164 print ''

165
166 print 'social optimum=%f' % socialOpt

167 print 'social schedule '

168 print socialSet

169 print ''

170
171 return pos

172 #enddef

173
174
175
176

31

177 if __name__ == "__main__":

178 jobsLengths = [1.15,1,1,1,1]

179 activationCost = 7.8

180
181 print "activation cost=%f\n" % activationCost

182 for i in range(len(jobsLengths)):

183 print 'job %d length %f' % (i + 1, jobsLengths[i])

184 #endfor

185 print ''

186
187 pos = calculatePOS(activationCost , jobsLengths)

188
189 print 'PoS %f'

190
191 sys.exit(0)

192 #endif

32

